
Data Science Project

Final Group Report

GROUP #5 – TOPIC: “CRUDE”

H.B. Arslangedikli (2713453)

G.J. Bouwens (2701442)

X.Y. Huang (2690243)

N.M. Soekhlal (2747471)

June 30, 2022

E EOR2 DSPT

Bachelor Econonometrics & Operations Research

Contents

1 Introduction 1

2 Classification Task 2

3 Data set & Pre-Processing Steps 4

3.1 Data Extraction . 4

3.2 Tokenization . 4

3.3 Data Cleansing . 4

3.4 Stemming . 5

3.5 Descriptive Statistics . 5

3.6 TF-IDF . 6

3.7 Sample Article . 6

4 Feature Engineering 7

5 Classification Algorithms 8

5.1 Validation . 8

5.2 Logistic Regression . 8

5.3 K-nearest Neighbours . 9

5.4 Naive Bayes . 9

6 Performance Evaluation 11

6.1 Metrics . 11

6.2 Results . 12

6.3 Discussion . 13

7 Conclusion 14

8 Software 15

A First Appendix 16

B Second Appendix 17

C References 18

2

Abstract

The increasing availability and volume of (digital) financial articles in the last decade has
stimulated the use of machine learning (ML) algorithms to automate the classification of said
documents. In this paper, we aim to classify documents of the Reuter-21578 data set as either
having ’crude’ or not as their topic. To this end, we remove documents with no label or
content, we transform the remaining articles to remove stop words and additional irrelevant
terms, to unify strongly related words that provide equivalent content, through stemming, and
to obtain a TF-IDF matrix. We derive and keep 40 features from this data representation via
Latent Semantic Analysis. We use logistic regression as a first classifier, as well as other
conventional methods, namely k-NN and naive Bayes (NB), which we expect to perform
reasonably well overall due to their proven track record in similar applications. Finally, we
combine a set of NB classifiers via the AdaBoost algorithm, which we expect to outperform
the single NB classifier.

Keywords: Document classification, Logistic regression, k-Nearest Neighbors, Boosting

1 Introduction

Financial news is a critical source of information for profitable trading on financial markets. In

order to respond quickly to a news article, it is highly useful to have an algorithm that can tell us

whether the article in question concerns the topic of interest, which, in our case will be ’crude’.

Globally, crude oil is one of the most important fuel sources for both corporates and private cit-

izens. It is thus crucial to recognise news articles that provide relevant information for the price

of this oil type. The research question that we study is hence: ”How can financial news articles

be automatically classified appropriately as belonging to the topic crude or not based on the doc-

uments’ body and title?”

We first extract the documents of interest from the used data set, Reuters-21578, Distribution

1.0, by selecting only those articles that have at least one topic and at least a title or body. Said

three attributes are also the only ones we keep, as the remaining elements serve no purpose in our

analysis. Subsequently, we merge the title and body per article and we clean the resulting texts by

removing terms that appear in well-established lists of stop words and additional terms we manu-

ally classified as such. We use the WordNet database to detect other words that lack meaning for

our purpose and which we can hence leave out. In addition, we apply stemming to rid the texts

of unnecessary repetitions of the same base form of a word, with different derivational affixes.

Next, we obtain a TF-IDF matrix, which we split into a train and test set, using stratified sam-

pling. To reduce the column dimension (the number of terms) of said matrix, we perform Latent

Semantic Analysis (LSA), an alternative to Principal Component Analysis (PCA), which supports

applications to (sparse) TF-IDF matrices. From the resulting 200 components, we selected the 40

that explain more than average variation in the original data as features. We start our modelling

phase with logistic regression, using a fine tuned threshold to turn the model’s fitted probabilities

into binary predictions. Subsequently, we adopt the conventional text classifier k-NN, with an

optimised number of nearest neighbours, as well as the naive Bayes (NB) classifier. Finally, we

1

leverage the power of multiple NB classifiers in the form of boosting. Section 1 discusses the

current literature on said classifiers as well as more advanced alternatives. Section 2 provides a

formal description of the classification task at hand, section 3 treats the original data set and the

way in which we transformed it to a representation that can be handled by our classifiers, whereas

section 4 reveals our approach to dimension reduction of the TF-IDF matrix, section 5 describes

the selected classification algorithms in detail, section 7 reflects on our methodology and results,

providing suggestions for future improvements, and finally, section 8 lists the software that we

used to implement our methods and techniques.

Related Literature

The literature provides a wide variety of classification algorithms that can be applied to the Reuters

data set. Kim et al. (2000) employ boosting methods based on NB classifiers to classify the ar-

ticles of Associated Press (AP) News and Financial Times (FT) from 1988-1990, respectively

1992-1994. They conclude that said methods yield substantial improvements in the considered

metrics compared to previously existing boosting algorithms, which typically used binary fea-

tures. Moldagulova et al. (2017) use k-NN with the Euclidean distance metric to classify text

documents. Indra et al. (2016) turn to the logit model for the classification of tweets. A more re-

cently developed method is the unified C-LSTM model as proposed by Zhou et al. (2015), which

aims to combine the advantages of both Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs). The model has been used in Sentiment Classification and Question

Type Classification, where it led to impressive results. In this paper, we also investigate the rela-

tive performance of (boosted) NB classifiers, k-NN and logit. However, we do so by making use

of the Reuters data set. The C-LSTM method is omitted due to computational complexity.

Many research papers have already used the Reuters data set to study the performance of ma-

chine learning algorithms for document classification. Apte et al. (1998) investigate decision trees

(DTs) for classifying a variant of the Reuters-21578 collection and they find substantial improve-

ment in the performance when combining decision trees adaptive resampling. Joachims (1998)

opts for Support Vector Machine (SVMs) to classify articles in the Reuters data set. He con-

cludes that SVMs achieve considerable improvements over conventional methods such as k-NN

classifiers. However, DTs and SVMs fall outside the scope of this paper.

2 Classification Task

The mathematical notation used from this section onward is for a major part in accordance with

that of Sebastiani (2002). The document classification task can be described with the following

five stages:

1. Document Classification:
Let dj denote the j-th document and assign {0, 1} to each dj ∈ D, where D denotes the set of

all documents. Let c indicate the topic of interest and c̄ its complement. Our goal is to build a

2

classifier Φ(dj , c) ∈ {0, 1} that mimics Φ̂(dj , c), the ”expert classifier”, that is, we wish to mimic

the decision-making procedure of the experts that labeled the documents to begin with, due to the

supervised nature of our case.

2. Training, Testing & Validation:
Let the initial corpus, the set of all relevant documents with which we start the procedure, be

defined as Ω = {d1, ..., d|Ω|} ∈ D, where |Ω| is the number of documents in the corpus. De-

fine a training and validation set as TV = {d1, ..., d|TV |}, as well as a testing set, namely Te

= {D|TV |+1,, d|Ω|} (testing). TV splits into a training set Tr = {d1, . . . , d|Tr|} and a validation

set Va = {d|Tr|+1, .., d|TV |}. Note that in practice, the training, validation and testing observations

should be (pseudo) randomly drawn from the original data set and the second split can be replaced

with a cross-validation on TV, as introduced in subsection 5.1.

3. Document Indexing:
In this stage, each document dj is represented by a vector of weights, that is,

−→
dj =< w1j , ..., w|τ |j >,

where |τ | is the total number of words/terms appearing at least once in at least one document of

the corpus. In our case, said vectors are such that they form the so-called term-frequency times

inverse document-frequency (TF-IDF) matrix when lined up together. The purpose of using TF-

IDF rather than the tokens’ raw frequencies of occurrence in a given document is to scale down

the impact of tokens that occur very frequently in a given corpus and that are thus less informative

than terms that occur in a relatively limited proportion of the training corpus. The exact manner in

which TF-IDF realises this is explained in subsection 3.6.

4. Dimensionality Reduction (DR):
Since |τ | is often too large for many classification algorithms to properly handle, we wish to

(drastically) reduce the dimension of our data set to |τ ′| << |τ |, effectively reducing the risk

of overfitting. We can achieve said dimensionality reduction using a variety of methods, ranging

from term selection and term extraction to PCA. The features that we are left with at the end of

this stage can be denoted by −→ωj =< ω1j , ω2j , ..., ω|τ ′|j > for document j.

5. Machine Learning Classification:
A machine learning classifier can be seen as a mathematical function, denoted by CSV (categori-

sation status value), that maps from the vector space of all documents to numbers between 0 and

1. More formally, CSV: D → [0, 1] in case of soft classification and CSV: D → {0, 1} for hard

classification. Note that any soft CSV can be converted to a hard CSV by thresholding, e.g. if

CSV(dj) ≥ ψ, let CSV∗ = 1 and if CSV(dj) < ψ, let CSV∗ = 0, for ψ ∈ (0, 1). In our case,

this conversion is necessary as we wish to determine whether document j has crude as one of its

topics, meaning that we are interested in predicting crj , which takes on the value 1 if document

j has crude as its topic and 0 otherwise. A wide range of classifiers is at our disposal, but our

research is limited to the ones mentioned in section 1.

3

3 Data set & Pre-Processing Steps

3.1 Data Extraction

The used Reuters data set is based on 22 Standard Generalized Markup (SGM) files, which contain

a range of details on 21578 financial news articles in total. However, for our research, the only

elements of interest are the title, body and topics of the articles, meaning that these pieces are

pilled out of the SGM files for each article, whereas other components, such as dates, datelines

and places are omitted. Moreover, we require each article to have at least one topic and to have

either a body, a title or both, for otherwise we lack the true label and/or the information with which

we aim to predict the label. After filtering the documents based on said requirement, we are left

with 11305 articles. Each article’s list of topics is converted to a binary value, based on whether

the topic of interest was present in the list. It turns out that only 627 of the remaining articles

belong to our class of interest, namely the class of documents having crude as their topic. Thus,

we are dealing with a single class imbalanced classification task, which must be taken into account

when making decisions in the following stages.

3.2 Tokenization

The body and title of each article are merged to obtain one text per article, with no distinction

between parts belonging to the body and title. To represent the text in a form that can be processed

by classification algorithms, we make use of the so-called bag-of-words model, which is the de-

facto standard approach in natural language processing. Within said model, we consider the text of

each article to be a collection (“bag”) of words, disregarding grammar and word order, but keeping

track of how often each word appears in the text. Since a word is simply a sequence of characters

in-between two white spaces/punctuation marks, we extract the words from the text by splitting

each text in a set of elements with white space as the separator and by subsequently removing the

punctuation marks from said elements. This process is known as tokenization.

3.3 Data Cleansing

At this point, the bag-of-words representations of the articles still contain terms that are completely

or partially made up of digits, even though we do not deem digits valuable for predicting whether a

given article has crude as its topic. We thus remove the (parts of) elements that are digits as well as

the characters that connect digits to other parts of terms, e.g. the character ’-’. Since capitalization

is of no concern for our purpose, we convert our texts to lowercase. Subsequently, we remove all

occurrences of manually selected and several predefined lists (Bird et al., 2009, Weischedel, Ralph,

et al., 2013) of so-called stop words, words that are irrelevant for text classification, but whose

presence in texts is imposed by the semantics of the English language. To filter out the remaining

words with little to no relevance, we remove the ones that do not appear in the WordNet database

(Princeton University ”About WordNet.”, 2010), which are thus assumed to not be meaningful.

4

3.4 Stemming

Subsequently, we cut off the ends of the remaining words to reduce inflectional forms and deriva-

tionally related forms of a word to a common base form, a process known as stemming. More

specifically, we opt for the Porter stemmer as introduced by Porter (1980), because it outperforms

the most promising alternative, the Lancaster stemmer, in Razmi et al. (2021) and it is deemed a

reliable option for our application area, financial text mining, by Inzalkar and Sharma (2015).

3.5 Descriptive Statistics

To acquire insights into the distribution of the number of words in the articles and the (key)words

that appear frequently in the articles, we provide a couple of descriptive statistics.

Table 1: Descriptive statistics for the number of words in the articles, including the titles (after

removing stop words and stemming).

Min Max Mean Standard Deviation Skewness Kurtosis

#Words 7 2173 194.418 208.222 2.482 7.859

Figure 1: Boxplot of the number of words in the articles, including the titles (after removing stop

words and stemming).

Table 1 reveals that there is quite a large spread in the number of words appearing in the doc-

uments, as the shortest one only has 7 words, whereas the longest article has 2173 words. The

mean is much closer to the former and the distribution of the number of words appears to have a

relatively heavy right tail, given the skewness of 2.482. The kurtosis of 7.859 suggests that the

tails of said distribution are heavier than those of the normal distribution, which has a kurtosis of

3. Figure 1 illustrates the aforementioned right-skewed behaviour well, as there seem to be a rea-

sonable number of outliers on the right side of the interquartile range, whereas no outliers below

the first quartile are present. Given said observations, it is no surprise that the mean is substantially

larger than the median, the latter of which turns out to be 127.

Figure 2 in Appendix A gives an indication of the most frequently occurring keywords in the fi-

nancial news articles and most of them are indeed strongly associated with the financial markets,

5

the banking system and corporate life. Figure 3, on the other hand, is not limited to key words and

hence also largely displays certain words, such as ’said’ that are less associated in the financial

world, but simply very common in texts in general.

3.6 TF-IDF

Finally, we convert the bags of words to the aforementioned TF-IDF matrix, where variables

containing up to three original words are permitted, as long as the resulting terms occur no less

than 5 times in total and in less than 80% of the articles. The latter restrictions are imposed to

prevent classification based on terms that are too common to provide an appropriate basis for

discrimination of crude and non-crude documents. This yields 28843 terms (columns) in total.

The formula used for the conversion of a term t of a document dj is tf-idf(t, dj) = tf(t, dj) · idf(t),

where the tf component is set to 1 and the idf component is calculated as idf(t) = log[(1+n)/(1+

df(t))]+1, where n denotes the total number of documents and df(t) is the document frequency of

t, which is the number of documents that contain the term t. The reason for adding “1” to the idf

component is to ensure that terms with zero idf (terms occurring in all documents) are not ignored

completely. The constant ’1’ is added to the numerator and denominator of the idf component,

meaning that we essentially act as if we observed an additional document containing every term

that is present in the data set exactly once, preventing zero divisions. Finally, the rows of the

TF-IDF matrix are normalised such that the Euclidean norm of each vector is 1.

3.7 Sample Article

To illustrate the challenges that we faced throughout the pre-processing steps, we provide the raw

body (as given in the original SGM file) of an article named ”SAUDI RIYAL DEPOSIT RATES

REMAIN FIRM”, which has (only) the topic crude, below:

”Saudi riyal interbank deposits were steady at yesterday’s higher levels in a quiet market. Traders

said they were reluctant to take out new positions amidst uncertainty over whether OPEC will

succeed in halting the current decline in oil prices. Oil industry sources said yesterday several

Gulf Arab producers had had difficulty selling oil at official OPEC prices but Kuwait has said there

are no plans for an emergency meeting of the 13-member organisation. A traditional Sunday lull

in trading due to the European weekend also contributed to the lack of market activity. Spot-next

and one-week rates were put at 6-1/4, 5-3/4 pct after quotes ranging between seven, six yesterday.

One, three, and six-month deposits were quoted unchanged at 6-5/8, 3/8, 7-1/8, 6-7/8 and 7-3/8,

1/8 pct respectively. The spot riyal was quietly firmer at 3.7495/98 to the dollar after quotes of

3.7500/03 yesterday. REUTER ”

Aside from the Reuter signature with which each article ends, the sample has many irrelevant terms

that we can expect in text data in general, including numbers written out and terms containing a

combination of digits and the characters ’-’ and ’/’. The term ’13-member’ is an example of the

latter which even contains a word. Said types of unwanted terms are removed as described in

6

subsection 3.3, as our manually chosen stop words include numbers written out. In addition, the

article contains the words ’quiet’ and ’quietly’, which have the same stem, meaning that they

are reduced to the same base form by the Porter stemmer. Finally, this example illustrates an

important complication of text mining with the abbreviation ’prc’ of ’percent’; different texts can

use various conventions regarding for instance abbreviations, which is why it is important to have

a solid notion of the types of words present in the considered texts.

4 Feature Engineering

Before applying any method to construct features, we create a train set of 80% and a test set of 20%

of the original samples. To ensure sufficient representation of our topic of interest (the minority

class) in each subset, we split the full data set in a stratified fashion, sampling proportionally from

the articles with and without crude as their topic for each desired subset. As a result of said split,

the TF-IDF matrix for the train data contains 9044 rows (articles), while the matrix for the test

data encompasses the remaining 2261.

In many cases, PCA could be an appropriate way to construct a limited number of features out

of this large number of initial variables. However, due to the sparsity of the TF-IDF matrix, we

opt for an alternative method that can deal with such data matrices efficiently, namely Truncated

SVD (Halko et al., 2009). This is due to the fact that said compression technique carries out

linear dimensionality reduction via truncated singular value decomposition where the data is not

centered prior to the calculation of the singular value decomposition, as opposed to PCA. When

applied to TF-IDF matrices, Truncated SVD is known as Latent Semantic Analysis (LSA). We

employ LSA by computing 200 components (potential features), for each of the ten folds resulting

from a 10-fold stratified cross-validation on the train set, where the number of folds was chosen in

accordance with the cross-validation used to tune hyperparameters of the classification algorithms

(see section 5). Subsequently, we set the number of components to keep from the full train set

equal to the rounded average of the number of components that explain an above average portion

of the variance in each of the ten folds. This procedure leaves us with 40 components (features) for

the modelling phase. Figure 4 in Appendix A displays the correlations between these components,

which reveals that the correlation between the first and third is strongly negative (close to -1),

whereas the other correlations are mostly close to 0, with a few positive and negative outliers. To

prevent data leakage (and a potential mismatch between the features and model parameters), the

aforementioned number of components is treated as an estimated parameter and thus kept fixed

when performing LSA on the test set to obtain the same number of features to predict the test

labels with.

7

5 Classification Algorithms

5.1 Validation

To tune the hyperparameters of each of the following models, we use K-fold stratified cross-

validation, where K is set to 10, as proposed by the naive rule of Jung (2018), based on the

training set of 9044 documents and 40 features. This means that in each of 10 runs, we use 9 folds

to train the model and we use the remaining one to evaluate its performance with the current value

of the hyperparameter. The metric used to evaluate the performance of the cross-validated model

on the validation set is the F1 score. This performance metric was proposed by Zou et al. (2016)

for single class imbalanced classification problems, such as the one at hand.

5.2 Logistic Regression

As a first benchmark, we employ a logit model, due to ease of implementation, interpretability

of the estimated parameters and the proven reliability of logistic regression in a wide variety of

scenarios throughout the history of classification modelling, though the remarkable vulnerability

of the model to large dimensional data can potentially lead to suboptimal results with the number

of features that we use.

To classify documents with a linear parametric model, we could define a new binary variable

yj denoting whether document j has topic crude and model it as follows:

yj = β0 + β1 · ω1j + β2 · ω2j + ...+ β|τ ′| · ω|τ ′|j + ej .

The ej can be assumed to have a logistic distribution and the parameters β0, ..., β|τ ′| can be esti-

mated as β̂0, ..., β̂|τ ′| with Maximum Likelihood Estimation (MLE). The resulting predictions

ŷj = β̂0 + β̂1 · ω1j + β̂2 · ω2j + ...+ β̂|τ ′| · ω|τ ′|j ,

can be seen as (estimated) probabilities of the corresponding documents having topic crude. How-

ever, the ŷj are not guaranteed to be sensible probabilities between 0 and 1. Thus, we instead

define the fitted probabilities p̂j as a logistic transformation of the yj , i.e.

p̂j =
1

1 + e−ŷj
∈ (0, 1).

Finally, as logit is a soft classifier, it is necessary to set a threshold ϕ ∈ (0, 1) for the pj to obtain the

desired binary predictions, as introduced in section 2. This hyperparameter was optimised using

the aforementioned cross-validation in a range of 50 values, ranging from 0.5 to 0.99, because a

threshold below 0.5 in order to predict the minority class is deemed unconventional and intuitively

unreasonable in scenarios where the severity of the class imbalance is comparable to ours.

8

5.3 K-nearest Neighbours

The non-parametric k-NN model is generally perceived as a rather simple text classifier that can

nonetheless yield predictive performance similar to that of more advanced algorithms.

Its purpose is to take a prediction point, −→ω0, which contains features of a new observation

(document), and to compute a prediction, f̂(−→ω0), of the value of the dependent variable, cr0, of

this new observation using the K closest observations among our training set, where closeness is

measured as a function of the observations’ features. Given a value for the parameter K and a

prediction point −→ω0, KNN identifies the K training observations that are closest to −→ω0, represented

by N0. If the dependent variable is categorical, we speak of KNN classification and we simply

take the category with highest frequency among the K nearest training observations as a prediction

for the new point, i.e.

f̂(−→ω0) = modecrj (N0). (1)

Choosing the value of K implies a trade-off between the bias and the variance of the classifier,

as an increase in K generally reduces the bias and simultaneously increases the variance of the

k-NN predictions. Said hyperparameter is thus optimised in the range of integers between 1 and

50 via the cross-validation. The other hyperparameter that we tune is the distance measure with

which the K nearest neighbours of prediction points are determined. The comparison study of

Mulak and Talhar (2015) favours Manhattan distance over Euclidean distance and Chebychev

distance. However, due to the difference in application, we include the distance measure as a

tuning parameter in the cross-validation and consider said three measures to determine whether

Manhattan distance is the best option in our case as well.

5.4 Naive Bayes

Another relatively simple yet popular benchmark in the literature is Naive Bayes (NB). Despite

their typically incorrect assumptions, NB classifiers have proven their worth in a wide range of

applications, in particular text classification. The conditional independence of the features that is

assumed, ensures that we can estimate each one dimensional distribution separately, which reduces

the negative effects of the Curse of Dimensionality. Zhang (2004) provides further theoretical

justifications for the usefulness and reliability of NB classifiers.

The goal of NB is to compute the probability of c given the features of document j, −→ωj . To this

end, we apply Bayes’ theorem as follows:

P (c|−→ωj) =
P (c) · P (−→ωj |c)

P (−→ωj)
.

The problem is that we cannot compute P (−→ωj |c) and P (−→ωj), as there are too many possible re-

alisations of −→ωj . Thus, we ’naively’ assume that ωij is independent of ωkj whenever i ̸= k, that

is, we assume that each feature of a document is independent from the other features of that same

9

document. Then,

P (−→ωj |c) =
|τ ′|∏
k=1

P (ωkj |c),

where the terms of the product have a(n) assumed closed form expression, depending on the nature

of the ωkj . If for instance ωkj ∈ 0, 1 and if we let pk denote P (ωkx = 1|c), then

p(ωkj |c) = p
wkj

k · (1− pk)
1−wkj ,

where pk, the probability of term k, can be estimated directly from the data as the fraction of

documents from the training set with the topic of interest, c, where term k is present. This approach

corresponds to the binary independence classifier (Robertson and Sparck Jones, 1976). For generic

ωkj , since P (−→ωj) is a constant given the features at our disposal, we have:

P (c|−→ωj) ∝ P (c) ·
|τ ′|∏
k=1

P (ωkj |c),

which means that we can obtain prediction, ĉ, of the document’s label as follows:

ĉ = argmaxcP (c)

|τ ′|∏
k=1

P (ωkj |c),

where P (c) and P (ωkj |c) can be estimated by Maximum A Posteriori (MAP) estimation. P (c) is

then simply the fraction of documents with the topic of interest in the training set.

The primary difference between the various NB classifiers lies in the assumptions made con-

cerning the distribution of P (ωkj |c). In our case, the ωkj are elements of the components resulting

from the LSA, which lie between -1 and 1. Hence, we opt for the Gaussian Naive Bayes (GNB)

classifier, which supports said domain of the features and imposes a Gaussian likelihood:

P (ωkj |c) =
1√
2πσ2c

e
−

(ωkj−µc)
2

2σ2
c ,

where σc and µc are estimated using MLE.

Before training or testing the model, we apply the Yeo-Johnson power transformation (Yeo

and Johnson, 2000) to the features in order to make them more Gaussian-like. The only hyper-

parameter we tune via cross-validation is the variance smoothing parameter, which is the fraction

of the largest variance of all features that is added to all variances to improve the computational

stability of the calculations. The grid of values we consider for the smoothing parameter contains

100 evenly spaced numbers on a log scale from 10−9 to 1.

We augment GNB by means of boosting, as this approach was rated favourably by Kim et al.

(2000). In particular, we implement the AdaBoost algorithm introduced by Freund and Schapire

(1995). Its fundamental idea is to fit a set of weak learners, in our case NB classifiers, on modified

versions of the data. Subsequently, the predictions from the weak learners are combined via a

10

majority vote to yield the final predictions. The modified versions of the data set are obtained by

assigning a weight, αi, to each of the |Tr| observations per iteration of the boosting algorithm. The

weights are initialised as 1/|Tr|, meaning that the first iteration trains the classifier on the original

training set. However, for each following iteration, every weight is altered and the classifier is

trained using the newly weighted samples. An important aspect of this procedure is that for each

iteration, the observations that were incorrectly classified in the previous iteration receive a larger

weight, whereas the correctly classified observations obtain a smaller weight. Thus, subsequent

classifiers are forced to focus more on the observations that their predecessors could not correctly

classify. The number of weak learners to combine is a hyperparameter, which we thus tune using

our cross-validation and a grid of values containing 5, 10, 20 and 50.

6 Performance Evaluation

6.1 Metrics

The predictive performance of the considered models was evaluated using the test set of |Te| =
2261 samples. We use a variety of metrics to describe different aspects of each classifier’s perfor-

mance, most of which are derived from the components of the generic confusion matrix, which

we present as Table 3 in Appendix B) and from which we use the notation in the remainder of this

section.

The simplest performance measure is the accuracy, which we define as the fraction of all clas-

sified documents that are classified correctly, i.e.

Accuracy =
TN + TP

|Te|
∈ [0, 1]. (2)

The accuracy is an intuitive measure of a classifier’s performance, but particularly in cases with se-

vere data imbalance, such as the classification task at hand, the accuracy may not be sufficient, due

to the fact that it can be dominated by correct classifications of the majority class (true negatives),

such that even a classifier that always predicts this class, neglecting all information provided by

the features, can achieve a high accuracy, whilst incorrectly classifying every observation belong-

ing to the minority class. In such cases, we wish to additionally consider metrics that measure the

extent to which a classifier can correctly assign the positive class to observations.

One such metric is the recall, which is defined as the fraction of samples belonging to the

positive class that are correctly classified as such, i.e.

Recall =
TP

FN + TP
∈ [0, 1]. (3)

To arrive at the limitation of recall as a performance measure, we consider a classifier that labels

each observation as being a member of the positive class. In that case, the recall of the classifier

will be 1, as there are no (false) negatives. However, such a classifier is far from favourable given

that most observations do not belong to the positive class. Recall can thus be seen as a measure

11

of quantity: it solely considers the fraction of true positives that were correctly classified, without

taking into account how biased towards the positive class the classifier in question needs to be in

order to obtain many true positives. This brings rise to the need for a metric that considers the

quality of the positive classifications.

Precision realises this by measuring the number of correct positive classifications as a fraction

of the total number of positive classifications, i.e.

Precision =
TP

FP + TP
∈ [0, 1]. (4)

Precision is on its turn a less appropriate measure for classifiers that are rather conservative when

it comes to classifying observations as members of the positive class, as a classifier that only

assigns a positive label to an observation when it is extremely confident will have relatively few

positives, most of which will likely be correct classifications. This will yield a high precision as

this metric only considers the observations that obtain a positive label, ignoring the fact that such

a conservative classifier may fail to recognise many positive observations as such. Depending on

the application and the needs of stakeholders, either recall or precision could be a more suitable

metric, but in our case we deem a false crude label and a false non-crude label to be equally

harmful.

Hence, we consider a metric that conveys a balance between precision and recall, namely the

F1 score, which is defined as follows:

F1 = 2 · Precision ∗Recall
Precision+Recall

∈ [0, 1]. (5)

Note that the F1 score can only be 1 if both the precision and accuracy are 1, which is the ideal

case. A value close to 0 indicates that either precision or recall is poor (or both).

In addition, we take into account the ROC AUC scores of the classifiers, which measure the

Area Under the Receiver Operating Characteristic Curve (ROC AUC) from the predictions. An

ROC curve is a plot which displays the performance of a classifier as the threshold that determines

the way in which observations are discriminated is varied. The curve is generated by plotting

the fraction of true positives out of all positives (true positive rate) against the fraction of false

positives out of all negatives (false positive rate), at varying threshold values (Fawcett, 2006). The

AUC measures the classifier’s ability to discriminate between positive and negative observations,

effectively summarising the ROC curve. As the AUC increases, the classifier becomes better able

to distinguish between positive and negative samples.

6.2 Results

In addition to evaluating the performance of the aforementioned classifiers, we also consider a

so-called dummy classifier, which always predicts the majority class, in our case the non-crude

label. This classifier serves as a baseline for the classifiers that do make use of the derived features.

The evaluation results are based on a test set of 2261 documents, 125 of which have crude as their

12

topic.

Table 2: Performance measures for each of the considered classifiers. (Hyper)parameter values

that are of particular interest for the interpretation/explanation of the performances are provided

between brackets for the corresponding classifiers.

Accuracy Recall Precision ROC AUC F1

Dummy 0.945 0.000 0.000 0.500 0.000

Logit(threshold=0.73) 0.935 0.272 0.374 0.623 0.315

k-NN(metric=Euclidean, k=5) 0.949 0.112 0.737 0.555 0.194

GNB 0.932 0.000 0.000 0.493 0.000

Boosted GNB(n estimators=5) 0.924 0.024 0.058 0.501 0.034

6.3 Discussion

Table 2 reveals the performance of the classifiers based on the introduced metrics. As expected, the

dummy classifier reaches a rather high accuracy, namely 0.945, due to the fact that the consistently

chosen majority class covers such a large proportion of the test set, whereas the recall, precision

and hence F1 score are 0 since there are no positive classifications. The Dummy classifier’s ROC

AUC score of 0.500 can be taken as a suitable baseline for the other classifiers. The logit model

yields slightly lower accuracy than the dummy classifier, namely 0.935, whereas the recall and

precision are substantially larger (0.272 and 0.374, respectively), which is intuitive, given that the

Logit model classifies a document as having topic crude when the fitted probability of this event

exceeds the optimised threshold, which is typically low enough to yield at least some positive clas-

sifications for the observations for which the model is confident enough. In our case, the optimal

threshold of 0.73 is much higher than the standard value of 0.5, which is sensible given the small

proportion of the test observations having crude as their topic. The reasonable increase in ROC

AUC score from 0.500 to 0.623 and the sizable increase in the F1 score from 0.000 to 0.315 also

indicates that the logit model performs considerably better than the dummy classifier.

Regarding the k-NN classifier, we first note that the optimal distance measure turns out to be

Euclidean distance, contrary to the study of Mulak and Talhar (2015), where Manhattan distance

was preferred. This underlines the importance of the specific classification task at hand and the

accompanying data set for the choice of hyperparameters. The optimal value of k was set to 5,

which is rather moderate, perhaps due to the relatively large amount of features. The accuracy of

the k-NN classifiers is higher than that of both the logit and dummy models. The recall is sub-

stantially lower than that of the logit model, whereas the precision is much larger. The difference

in the recall values indicates that the logit model is preferable in terms of the number of crude

documents it can ’detect’, whereas a crude label from the k-NN model is more reliable due to the

higher precision. A stakeholder who is specifically interested in one of said capabilities might thus

prefer the corresponding classifier. We note that the relatively high precision of k-NN enables it

to outperform the dummy classifier in terms of accuracy whilst rendering positive classifications

as opposed to the latter, for the dummy classifier guarantees correct classification of all non-crude

13

documents, meaning that k-NN must be somewhat precise in its positive classifications in order to

achieve a higher number of correct classifications overall. The balancing of recall and precision

that the F1 reflects favours the combination of the former metrics obtained by the logit model as

opposed to k-NN, because the latter attains a lower F1 score of 0.194. The ROC AUC score of the

k-NN is also inferior, namely 0.555, but still higher than that of the dummy baseline.

The performance results of the GNB classifier are disappointing, as they are completely in-

ferior to those of the dummy classifier: the recall, precision and F1 have remained 0, whereas

the accuracy and ROC AUC of the GNB classifier are slightly lower (0.932 and 0.493, respec-

tively). This implies that the GNB classifier only differs from the Dummy classifier in that it has a

few false positives: some non-crude documents are wrongfully classified as having crude as their

topic, which keeps the recall, precision and F1 score 0, as there are no true positives, whereas the

accuracy decreases compared to the Dummy classifier due to said false positives.

The Boosted GNB classifier based on the optimised number of 5 estimators does manage to

correctly classify a few crude documents, as the recall and precision are marginally above 0 (0.024

and 0.058, respectively), which yields a positive but relatively small F1 score of 0.034. This does,

however, go hand in hand with a further decline in accuracy, leaving the Boosted GNB with the

lowest accuracy of all considered models, namely 0.924. The ROC AUC increased minimally

to 0.501 compared to the dummy model. These performance measures do not give us sufficient

reason to deem the Boosted GNB classifier a substantial improvement from the dummy classifier,

despite the larger (computational) complexity.

7 Conclusion

We started with a review of the relevant literature and proceeded to prepare our initial data set

for the modelling phase. We selected the documents that have both a label and a predictor and

omitted all article attributes that do not fall under said two categories. From said documents of

interest we removed words that were not relevant for our purpose, after which we stemmed the

remaining terms. The stemmed words in the bag-of-words model were transformed to a TF-IDF

matrix. Train and test sets were created from said matrix and we extracted features from them by

performing LSA.

We used the derived features to analyse logit, k-NN, GNB and Boosted GNB classifiers, where

the hyperparameters of each model were optimised using 10-fold stratified cross-validation. The

accuracy of each classifier is well above 0.9, as expected due to the fact that even a dummy

classifier can obtain such a high accuracy score by simply classifying each document as having

crude as its topic. The other metrics reveal the considerable differences between the classifiers in

terms of predictive performance, based on which we formulate an answer to our research question,

which is twofold. The Logit model, with the threshold parameter set to 0.73, turns out to have the

highest recall and F1 score out of the considered classifiers. It is thus preferable in case detecting

as many crude documents whilst maintaining a high accuracy and F1 score is desired. The k-NN

classifier, however, yields the highest precision as well as the highest accuracy and the second

14

highest F1 score, meaning that it is the best option out of the analysed methods for a stakeholder

who wishes to detect a number of crude documents, but who is particularly interested in being

confident that the positively classified documents truly have crude as their topic. The GNB based

classifiers turn out to be less appealing in this case: the standard GNB classifier is revealed to be

inferior to the dummy classifier, whereas the Boosted GNB performs only marginally better on all

metrics except accuracy. We would thus not favor these probabilistic methods for this particular

application.

We realise that the pre-processing and feature engineering stages have an immense influence

on the predictive performance that can be attained by the classifiers we subsequently opt for and

we would thus suggest fellow researchers to investigate possibilities to further clean the data before

extracting features, for instance by removing irrelevant words that appear in the word cloud, to try

alternatives for the Porter stemmer, such as the Lancaster stemmer or lemmatizers, and to consider

alternative methods for dimensionality reduction, such as term clustering and high correlation

filters. Regarding classification algorithms, future research could expand on the boosting methods

that we used and explore increasingly complicated algorithms that require additional computer

power, such as the C-LSTM method discussed in section 1. The next step would be to leverage

the strengths of different types of classifiers via ensemble methods.

8 Software

The implementation of the discussed methodology was done in the Python computer language.

To navigate the raw data we used the BeautifulSoup library (Richardson, 2007), whereas data

cleansing and stemming were performed with the Natural Language Toolkit (NLTK) (Bird et al.,

2009). To implement the algorithms from the feature engineering and classification stages, as

well as the involved data splitting and cross-validation, we used the ’scikit-learn’ (Pedregosa et

al., 2011) library. The ’Pandas’ (The Python Development Team, 2021), ’Matplotlib’ (Hunter,

2007) and ’NumPy’ (Harris, Millman, van der Walt et al., 2020) libraries were used for data

manipulation, visualisation and numerical computing, respectively.

15

A First Appendix

Figure 2: Counts of the most frequent keywords for a stratified random sample of 1000 articles

from the full set of articles left after stemming.

Figure 3: Word cloud corresponding to a stratified random sample of 1000 articles from the full

set of articles before stemming.

16

Figure 4: Heatmap of the correlations between the components resulting from the LSA.

B Second Appendix

Table 3: Generic confusion matrix.

True
topic

Predicted topic

Not Crude Crude

Not Crude
#True

Negatives

(TN)

#False

Positives

(FP)

Crude
#False

Negatives

(FN)

#True

Positives

(TP)

17

C References

Apte, C., Damerau, F., Weiss, S. M., Apte, C., Damerau, F., and Weiss, S. (1998). Text mining

with decision trees and decision rules. In Proceedings of the Conference on Automated

Learning and Discovery, Workshop 6: Learning from Text and the Web.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many

relevant features. In European conference on machine learning, pages 137–142. Springer.

Princeton University ”About WordNet.” WordNet. Princeton University. 2010.

Zou, Q., Xie, S., Lin, Z., Wu, M., Ju, Y. (2016). Finding the best classification threshold in

imbalanced classification. Big Data Research, 5, 2-8.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.

D. Lewis. Reuters 21578 data set. URL=http://www.research.att.com/lewis/- reuters21578.html.

Sebastiani, Fabrizio. (2002). Machine Learning in Automated Text Categorization. ACM

Computing Surveys. 34. 1-47. 10.1145/505282.505283.

Kim, Y.H., Hahn, S.Y., and Zhang, B.T. 2000. Text filtering by boosting naive Bayes classifiers.

In Proceedings of SIGIR-00, 23rd ACM International Conference on Research and

Development in Information Retrieval (Athens, Greece, 2000), 168–175.

Zhou, C., Sun, C., Liu, Z., Lau, F. (2015). A C-LSTM neural network for text classification.

arXiv preprint arXiv:1511.08630.

Nedungadi, P., Harikumar, H., Ramesh, M. (2014, February). A high performance hybrid

algorithm for text classification. In The Fifth International Conference on the Applications of

Digital Information and Web Technologies (ICADIWT 2014) (pp. 118-123). IEEE.

Yoonsuh Jung (2018) Multiple predicting K-fold cross-validation for model selection, Journal of

Nonparametric Statistics, 30:1, 197-215. https://doi.org/10.1080/10485252.2017.1404598

Moldagulova, A., Sulaiman, R. B. (2017, May). Using KNN algorithm for classification of textual

documents. In 2017 8th international conference on information technology (ICIT)

(pp. 665-671). IEEE.

Indra, S. T., Wikarsa, L., Turang, R. (2016, October). Using logistic regression method to classify

tweets into the selected topics. In 2016 international conference on advanced computer science

and information systems (icacsis) (pp. 385-390). IEEE.

Inzalkar, S., Sharma, J. (2015). A survey on text mining-techniques and application.

International Journal of Research In Science Engineering, 24, 1-14.

Porter, M. ”An algorithm for suffix stripping.” Program 14.3 (1980): 130-137.

Razmi, N. A., Zamri, M. Z., Ghazalli, S. S. S., Seman, N. (2021). Visualizing stemming

techniques on online news articles text analytics. Bulletin of Electrical Engineering and

18

Informatics, 10(1), 365-373.

Mulak, P., Talhar, N. (2015). Analysis of distance measures using k-nearest neighbor algorithm

on kdd dataset. Int. J. Sci. Res, 4(7), 2319-7064.

Robertson, S. E. and Sparck Jones, K. 1976. Relevance weighting of search terms.

J. Amer. Soc. Inform. Sci. 27, 3, 129–146. Also reprinted in Willett [1988], pp. 143–160.

H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

I.K. Yeo and R.A. Johnson, “A new family of power transformations to improve normality or

symmetry.” Biometrika, 87(4), pp.954-959, (2000).

Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and

an Application to Boosting”, 1995.

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), Introduction to

Information Retrieval, Cambridge University Press, chapter 18: Matrix decompositions &

latent semantic indexing

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27(8),

pp. 861-874.

Steven Bird, Ewan Klein, and Edward Loper (2009). Natural Language Processing with Python.

O’Reilly Media Inc. https://www.nltk.org/book/

Weischedel, Ralph, et al. OntoNotes Release 5.0 LDC2013T19. Web Download.

Philadelphia: Linguistic Data Consortium, 2013.

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Seabold, Skipper, and Josef Perktold. “statsmodels: Econometric and statistical modeling with

python.” Proceedings of the 9th Python in Science Conference. 2010.

Reback, J., McKinney, W., jbrockmendel, den Bossche, J. V., Augspurger, T., Cloud, P., gfyoung,

Hawkins, S., Sinhrks, Roeschke, M., Klein, A., Petersen, T., Tratner, J., She, C., Ayd,

W., Naveh, S., Garcia, M., Schendel, J., patrick, Hayden, A., Saxton, D., Jancauskas, V.,

McMaster, A., Gorelli, M., Battiston, P., Seabold, S., Dong, K., chris-b1, h-vetinari, and

Hoyer, S.: Pandas-Dev/Pandas: Pandas 1.2.2, Zenodo [code], https://doi.org/10.5281/zenodo.

4524629, 2021.a

J. D. Hunter, ”Matplotlib: A 2D Graphics Environment”, Computing in Science Engineering,

vol. 9, no. 3, pp. 90-95, 2007.

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature

585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link).

Richardson, L. (2007). Beautiful soup documentation. April.

Bird, S., Klein, E., Loper, E. (2009). Natural language processing with Python: analyzing text

with the natural language toolkit. ” Ox27;Reilly Media, Inc.”

Halko, et al. (2009). “Finding structure with randomness: Stochastic algorithms for constructing

19

approximate matrix decompositions”

20

	Introduction
	Classification Task
	Data set & Pre-Processing Steps
	Data Extraction
	Tokenization
	Data Cleansing
	Stemming
	Descriptive Statistics
	TF-IDF
	Sample Article

	Feature Engineering
	Classification Algorithms
	Validation
	Logistic Regression
	K-nearest Neighbours
	Naive Bayes

	Performance Evaluation
	Metrics
	Results
	Discussion

	Conclusion
	Software
	First Appendix
	Second Appendix
	References

